Linear Algebra I
 08/04/2020, Wednesday, 18:45-22:15

You are NOT allowed to use any type of calculators.

1 Linear equations and column/null spaces
$(7+8=15 \mathrm{pts})$

Let $A, B \in \mathbb{R}^{n \times n}$. Prove or disprove the following statements:
(a) There exists $X \in \mathbb{R}^{n \times n}$ such that $A X=B$ if and only if the column space of B is a subspace of the column space of A.
(b) There exists $Y \in \mathbb{R}^{n \times n}$ such that $Y A=B$ if and only if the null space of A is a subspace of the null space of B.

2 Determinants

Let $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^{3}$ be vectors such that $\|\boldsymbol{x}\|=\|\boldsymbol{y}\|=\|\boldsymbol{z}\|=\sqrt{3}, \boldsymbol{x}^{T} \boldsymbol{y}=\boldsymbol{y}^{T} \boldsymbol{z}=2$, and $\boldsymbol{x}^{T} \boldsymbol{z}=1$. Also, let $A \in \mathbb{R}^{3 \times 3}$ be a matrix such that

$$
A \boldsymbol{x}=\boldsymbol{y}+\boldsymbol{z}, \quad A \boldsymbol{y}=\boldsymbol{z}+\boldsymbol{x}, \quad \text { and } \quad A \boldsymbol{z}=\boldsymbol{x}+\boldsymbol{y} .
$$

(a) Are $\boldsymbol{x}, \boldsymbol{y}$, and \boldsymbol{z} linearly dependent? Justify your answer.
(b) Find the determinant of A.

3 Partitioned matrices and diagonalizability

Let $M \in \mathbb{R}^{n \times n}$ be a nonsingular and diagonalizable matrix. Is the matrix

$$
\left[\begin{array}{ll}
M & M \\
M & M
\end{array}\right]
$$

diagonalizable? Justify your answer.
4 Inverse matrix

Let $x \in \mathbb{R}^{n}$ be a nonzero vector and a be a real number. Determine all values of a such that $I_{n}-a x x^{T}$ is nonsingular and find its inverse. (Hint: Its inverse is of the same form.)
(a) Let S be a subspace of the vector space $\mathbb{R}^{n \times n}$.
(i) Show that the so-called center of S

$$
C_{S}:=\left\{A \in \mathbb{R}^{n \times n} \mid A X=X A \text { for all } X \in S\right\}
$$ is a subspace of $\mathbb{R}^{n \times n}$.

(ii) Let $n=2$ and $S=\left\{A \mid A=A^{T}\right\}$. Determine the dimension of C_{S}.
(iii) Let $n=2$ and $S=\{A \mid \operatorname{trace}(A)=0\}$. Determine the dimension of C_{S}.
(b) Let x be a real number and $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ be a transformation given by

$$
(L(A))_{i j}= \begin{cases}x & \text { if } i=j \\ a_{i j} & \text { if } i \neq j .\end{cases}
$$

(i) Show that L is a linear transformation if and only if $x=0$.
(ii) Let $n=2$ and $x=0$. Find the matrix representation of L relative to the ordered basis

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right] .
$$

6 Linear differential equations

Solve the linear differential equations

$$
\begin{aligned}
x_{1}^{\prime}(t) & =2 x_{1}(t)-x_{2}(t)-x_{3}(t) \\
x_{2}^{\prime}(t) & =-x_{1}(t)+2 x_{2}(t)-x_{3}(t) \\
x_{3}^{\prime}(t) & =-x_{1}(t)-x_{2}(t)+2 x_{3}(t)
\end{aligned}
$$

with the initial conditions $x_{1}(0)=0, x_{2}(0)=1$, and $x_{3}(0)=5$.

10 pts free

