You are **NOT** allowed to use any type of calculators.

(7 + 8 = 15 pts)Linear equations and column/null spaces 1

Let $A, B \in \mathbb{R}^{n \times n}$. Prove or disprove the following statements:

- (a) There exists $X \in \mathbb{R}^{n \times n}$ such that AX = B if and only if the column space of B is a subspace of the column space of A.
- (b) There exists $Y \in \mathbb{R}^{n \times n}$ such that YA = B if and only if the null space of A is a subspace of the null space of B.

$\mathbf{2}$ **Determinants**

Let $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^3$ be vectors such that $\|\boldsymbol{x}\| = \|\boldsymbol{y}\| = \|\boldsymbol{z}\| = \sqrt{3}, \ \boldsymbol{x}^T \boldsymbol{y} = \boldsymbol{y}^T \boldsymbol{z} = 2$, and $\boldsymbol{x}^T \boldsymbol{z} = 1$. Also, let $A \in \mathbb{R}^{3 \times 3}$ be a matrix such that

$$A\mathbf{x} = \mathbf{y} + \mathbf{z}, \quad A\mathbf{y} = \mathbf{z} + \mathbf{x}, \text{ and } A\mathbf{z} = \mathbf{x} + \mathbf{y}.$$

- (a) Are $\boldsymbol{x}, \boldsymbol{y}$, and \boldsymbol{z} linearly dependent? Justify your answer.
- (b) Find the determinant of A.

Partitioned matrices and diagonalizability 3

Let $M \in \mathbb{R}^{n \times n}$ be a nonsingular and diagonalizable matrix. Is the matrix

$$\begin{bmatrix} M & M \\ M & M \end{bmatrix}$$

diagonalizable? Justify your answer.

Inverse matrix 4

Let $x \in \mathbb{R}^n$ be a nonzero vector and a be a real number. Determine all values of a such that $I_n - axx^T$ is nonsingular and find its inverse. (HINT: Its inverse is of the same form.)

(5 + 10 pts)

$$(15 \text{ pts})$$

(7 + 8 = 15 pts)

- (a) Let S be a subspace of the vector space $\mathbb{R}^{n \times n}$.
 - (i) Show that the so-called *center* of S

$$C_S := \{ A \in \mathbb{R}^{n \times n} \mid AX = XA \text{ for all } X \in S \}$$

is a subspace of $\mathbb{R}^{n \times n}$.

- (ii) Let n = 2 and $S = \{A \mid A = A^T\}$. Determine the dimension of C_S .
- (iii) Let n = 2 and $S = \{A \mid \text{trace}(A) = 0\}$. Determine the dimension of C_S .
- (b) Let x be a real number and $L: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ be a transformation given by

$$(L(A))_{ij} = \begin{cases} x & \text{if } i = j \\ a_{ij} & \text{if } i \neq j. \end{cases}$$

- (i) Show that L is a linear transformation if and only if x = 0.
- (ii) Let n = 2 and x = 0. Find the matrix representation of L relative to the ordered basis

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}.$$

6 Linear differential equations

(15 pts)

Solve the linear differential equations

$$x'_{1}(t) = 2x_{1}(t) - x_{2}(t) - x_{3}(t)$$

$$x'_{2}(t) = -x_{1}(t) + 2x_{2}(t) - x_{3}(t)$$

$$x'_{3}(t) = -x_{1}(t) - x_{2}(t) + 2x_{3}(t)$$

with the initial conditions $x_1(0) = 0$, $x_2(0) = 1$, and $x_3(0) = 5$.

10 pts free